- World Health Organization Global Report on Diabetes. (2016). Available online at: http://www.who.int/iris/handle/10665/204871
- Virta Health生酮逆转临床试验: McKenzie A, Hallberg S, Creighton BC, Volk BM, Link T, Abner M, et al. A Novel Intervention Including Individualized Nutritional Recommendations Reduces Hemoglobin A1c Level, Medication Use, and Weight in Type 2 Diabetes. JMIR Diabetes; 2017;2(1):e5.Available online at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6561315/
- Incidence of Remission in Adults With Type 2 Diabetes: The Diabetes & Aging Study (2014). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4237974/
- Ng M, Fleming T, Robinson M, Thomson B, Graetz N, Margono C, et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013: a systemic analysis for the Global Burden of Disease Study 2013. Lancet. (2014) 384:766–81. 10.1016/S0140-6736(14)60460-8 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Centers for Disease Control and Prevention National Diabetes Statistics Report, 2017. Atlanta, GA: Centers for Disease Control and Prevention, US. Dept of Health and Human Services; (2017). [Google Scholar]
- Karter AJ, Nundy S, Parker MM, Moffet HH, Huang ES. Incidence of remission in adults with type 2 diabetes: the diabetes & aging study. Diabetes Care. (2014) 37:3188–95. 10.2337/dc14-0874 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Gregg EW, Chen H, Wagenknecht LE, Clark JM, Delahanty LM, Bantle J, et al. Association of an intensive lifestyle intervention with remission of type 2 diabetes. JAMA. (2012) 308:2489–96. 10.1001/jama.2012.67929 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Bethel MA, Patel RA, Merrill P, Lokhnygina Y, Buse JB, Mentz RJ, et al. Cardiovascular outcomes with glucagon-like peptide-1 receptor agonists in patients with type 2 diabetes: a meta-analysis. Lancet Diabetes Endocrinol. (2018) 6:105–13. 10.1016/S2213-8587(17)30412-6 [PubMed] [CrossRef] [Google Scholar]
- Zinman B, Wanner C, Lachin JM, Loknygina Y, Buse JB, Mentz RJ, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. (2015) 373:2117–8. 10.1056/NEJMoa1504720 [PubMed] [CrossRef] [Google Scholar]
- Sjostrom L, Peltonen M, Jacobson P, Ahlin S, Andersson-Assarsson J, Anveden A, et al. Association of bariatric surgery with long-term remission of type 2 diabetes and with microvascular and macrovascular complications. JAMA. (2014) 311:2297–304. 10.1001/jama.2014.5988 [PubMed] [CrossRef] [Google Scholar]
- Lean MEJ, Leslie WS, Barnes AC, Brosnahan N, Thom G, McCombie L, et al. Primary care-led weight management for remission of type 2 diabetes (DiRECT): an open-label, cluster-randomised trial. The Lancet. (2018) 391:541–51. 10.1016/S0140-6736(17)33102-1 [PubMed] [CrossRef] [Google Scholar]
- Hallberg SJ, McKenzie AL, Williams PT, Bhanpuri NH, Peters AL, Campbell WW, et al. Effectiveness and safety of a novel care model for the management of type 2 diabetes at 1 year: an open-label, non-randomized, controlled study. Diabetes Ther. (2018) 9:583–612. 10.1007/s13300-018-0373-9 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Knop FK, Taylor R. Mechanism of metabolic advantages after bariatric surgery: its all gastrointestinal factors versus it’s all food restriction. Diabetes Care. (2013) 36(Suppl. 2): S287–91. 10.2337/dcS13-2032 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Taylor R. Type 2 diabetes: etiology and reversibility. Diabetes Care. (2013) 36:1047–55. 10.2337/dc12-1805 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Dicker D, Yahalom R, Comaneshter DS, Comaneshter DS, Vinker S. Long-term outcomes of three types of bariatric surgery on obesity and type 2 diabetes control and remission. Obes Surg. (2016) 26:1814–20. 10.1007/s11695-015-2025-8 [PubMed] [CrossRef] [Google Scholar]
- Arterburn DE, Bogart A, Sherwood NE, Sidney S, Coleman KJ, Haneuse S, et al. A multisite study of long-term remission and relapse of type 2 diabetes mellitus following gastric bypass. Obes Surg. (2013) 23:93–102. 10.1007/s11695-012-0802-1 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Rubino F, Nathan DM, Eckel RH, Schauer PR, Alberti KG, Zimmet PZ, et al. Metabolic surgery in the treatment algorithm for type 2 diabetes: a joint statement by International Diabetes Organizations. Diabetes Care. (2016) 39:861–7. 10.2337/dc16-0236 [PubMed] [CrossRef] [Google Scholar]
- Hamdan K, Somers S, Chand M. Management of late postoperative complications of bariatric surgery. Br J Surgery. (2011) 98:1345–55. 10.1002/bjs.7568 [PubMed] [CrossRef] [Google Scholar]
- Berger ER, Huffman KM, Fraker T, Petrick AT, Brethauer SA, Hall BL, et al. Prevalence and risk factors for bariatric surgery readmissions: findings from 130,007 admissions in the metabolic and bariatric surgery accreditation and quality improvement program. Ann Surg. (2018) 67:122–31. 10.1097/SLA.0000000000002079 [PubMed] [CrossRef] [Google Scholar]
- Snel M, Jonker JT, Hammer S, Kerpershoek G, Lamb HJ, Meinders AE, et al. Long-term beneficial effect of a 16-week very low calorie diet on pericardial fat in obese type 2 diabetes mellitus patients. Obesity. (2012) 20:1572–6. 10.1038/oby.2011.390 [PubMed] [CrossRef] [Google Scholar]
- Goday A, Bellido D, Sajoux I, Crujeiras AB, Burguera B, Garcia-Luna PP, et al. Short-term safety, tolerability and efficacy of a very low- calorie-ketogenic diet interventional weight loss program versus hypocaloric diet in patients with type 2 diabetes mellitus. Nutr Diabetes. (2016) 6:e230 10.1038/nutd.2016.36 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Wing RR, Blair E, Marcus M, Epstein LH, Harvey J. Year-long weight loss treatment for obese patients with type II diabetes: does including intermittent very-low calorie diet improve outcome? Am J Med. (1994) 97:354–62. 10.1016/0002-9343(94)90302-6 [PubMed] [CrossRef] [Google Scholar]
- Yamada Y, Uchida J, Izumi H, Tsukamoto Y, Inoue G, Watanabe Y, et al. A non-calorie-restricted low-carbohydrate diet is effective as an alternative therapy for patients with type 2 diabetes. Intern Med. (2014) 53:13–9. 10.2169/internalmedicine.53.0861 [PubMed] [CrossRef] [Google Scholar]
- Westman EC, Yancy WS, Mavropoulos JC, Marquart M, McDuffie JR. The effect of a low-carbohydrate, ketogenic diet versus a low-glycemic index diet on glycemic control in type 2 diabetes mellitus. Nutr Metab. (2008) 2008:5 10.1186/1743-7075-5-36 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Esposito K, Maiorino MI, Petrizzo M, Bellastella G, Giugliano D. The effects of a mediterranean diet on the need for diabetes drugs and remission of newly diagnosed type 2 diabetes: follow-up of a randomized trial. Diabetes Care. (2014) 37:1824–30. 10.2337/dc13-2899 [PubMed] [CrossRef] [Google Scholar]
- Saslow LR, Daubenmier JJ, Moskowitz JT, Kim S, Murphy EJ, Phinney SD, et al. Twelve-month outcomes of a randomized trial of a moderate-carbohydrate versus very low-carbohydrate diet in overweight adults with type 2 diabetes mellitus or prediabetes. Nutr Diabetes. (2017) 2017:304 10.1038/s41387-017-0006-9 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Kirk JK, Graves DE, Craven TE, Lipkin EW, Austin M, Margolis KL. Restricted-carbohydrate diets in patients with type 2 diabetes: a meta-analysis. J Am Diet Assoc. (2008) 108:91–100. 10.1016/j.jada.2007.10.003 [PubMed] [CrossRef] [Google Scholar]
- Wheeler ML, Dunbar SA, Jaacks LM, Karmally W, Mayer-Davis EJ, Wylie-Rosett J, et al. Macronutrients, food groups, and eating patterns in the management of diabetes: a systematic review of the literature, 2010. Diabetes Care. (2012) 35: 434–55. 10.2337/dc11-2216 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Davies MJ, D’Alessio DA, Fradkin J, Kernan WN, Mathieu C, Mingrone C, et al. Management of hyperglycemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care. (2018) 41:2669–701. 10.2337/dci18-0033 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- American Diabetes Association (ADA) Standards of Medical Care in Diabetes-2019. Diabetes Care. (2019) 42(Suppl. 1). 10.2337/dc19-Sdis01 [CrossRef] [Google Scholar]
- Department of Veteran Affairs and Department of Defense VA/DoD Clinical Practice Guideline for the Management of Type 2 Diabetes Mellitus in Primary Care. Version 5.0. (2017). 10.131410/RG.2.214188.67209 [CrossRef] [Google Scholar]
- Volek JS, Phinney SD, Forsythe CE, Quann EE, Wood RJ, Puglisi MJ, et al. Carbohydrate restriction has a more favorable impact on the metabolic syndrome than a low fat diet. Lipids. (2009) 44:297–309. 10.1007/s11745-008-3274-2 [PubMed] [CrossRef] [Google Scholar]
- Seshadri P, Iqbal N, Stern L, Williams M, Chicano KL, Daily DA, et al. A randomized study comparing the effects of a low-carbohydrate diet and a conventional diet on lipoprotein subfractions and C-reactive protein levels in patients with severe obesity. Am J Med. (2004) 117:398–405. 10.1016/j.amjmed.2004.04.009 [PubMed] [CrossRef] [Google Scholar]
- Volek JS, Sharman MJ, Gomez AL, DiPasquale C, Roti M, Pumerantz A, et al. Comparison of a very low-carbohydrate and low-fat diet on fasting lipids, LDL subclasses, insulin resistance, and postprandial lipemic responses in overweight women. J Am Coll Nutr. (2004) 23:177–84. 10.1080/07315724.2004.10719359 [PubMed] [CrossRef] [Google Scholar]
- Bhanpuri NH, Hallberg SJ, Williams PT, McKenzie AL, Ballard KD, Campbell WW, et al. Cardiovascular disease risk factor responses to a type 2 diabetes care model including nutritional ketosis induced by sustained carbohydrate restriction at 1 year: an open label, non-randomized, controlled study. Cardiovasc Diabetol. (2018) 17:56 10.1186/s12933-018-0698-8 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- International Diabetes Federation (IDF) The IDF consensus worldwide definition of the metabolic syndrome. IDF Commun. (2006) 2006:1–24. Available online at: https://www.idf.org/e-library/consensus-statements/60-idfconsensusworldwide-definitionof-the-metabolic-syndrome [Google Scholar]
- Huang PL. A comprehensive definition for metabolic syndrome. Dis Model Mech. (2009) 2:231–7. 10.1242/dmm.001180 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Brownbill RA, Ilich JZ. Measuring body composition in overweight individuals by dual energy x-ray absorptiometry. BMC Med Imaging. (2005) 5:1 10.1186/1471-2342/5/I. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Rothney MP, Brychta RJ, Schaefer EV, Chen KY, Skarulis MC. Body composition measured by dual-energy X-ray absorptiometry half-body scans in obese adults. Obesity. (2009) 17:1281–6. 10.1038/oby.2009.14 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Chun KJ. Bone densitometry. Semin Nucl Med. (2011) 41:220–8. 10.1053/j.semnuclmed.2010.12.002 [PubMed] [CrossRef] [Google Scholar]
- Kamel EG, McNeill G, Van Wijk CWV. Usefulness of anthropometry and DXA in predicting intra-abdominal fat in obese men and women. Obes Res. (2000) 8:36–42. 10.1038/oby.2000.6 [PubMed] [CrossRef] [Google Scholar]
- Reid KF, Naumova EN, Carabello RJ, Phillips EM, Fielding RA. Lower extremity muscle mass predicts functional performance in mobility-limited elders. J Nutr Health Aging. (2008) 12:493–8. 10.1007/BF02982711 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Moon JJ, Park SG, Ryu SM, Park CH. New skeletal muscle mass index in diagnosis of sacropenia. J Bone Metab. (2018) 25:15–21. 10.11005/jbm.2018.25.1.15 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Kline RB. Principles and Practice of Structural Equation Modeling. 3rd ed. New York: The Guilford Press; (2011). [Google Scholar]
- John JA, Draper NR. An alternative family of transformations. Appl Statist. (1980) 29:190–7. 10.2307/2986305 [CrossRef] [Google Scholar]
- Buse JB, Caprio S, Cefalu WT, Ceriello A, Del Prato S, Inzucchi SE, et al. How do we define cure of diabetes? ADA consensus statement. Diabetes Care. (2009) 32:2133–5. 10.2337/dc09-9036 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Kotronen A, Peltonen M, Hakkarainen A, Sevastianova K, Bergholm R, Johansson LM, et al. Prediction of non-alcoholic fatty liver disease and liver fat using metabolic and genetic factors. Gastroenterology. (2009) 137:865–72. 10.1053/j.gastro.2009.06.005 [PubMed] [CrossRef] [Google Scholar]
- Angulo P, Hui JM, Marchesini G, Bugianesi E, George J, Farrell GC, et al. The NAFLD fibrosis score: a noninvasive system that identifies liver fibrosis in patients with NAFLD. Hepatology. (2007) 45:846–54. 10.1002/hep.21496 [PubMed] [CrossRef] [Google Scholar]
- Graham JW, Olchowski AE, Gilreath TD. How many imputations are really needed? Some practical clarifications of multiple imputation theory. Prevention Sci. (2007) 8:206–13. 10.1007/s11121-007-0070-9 [PubMed] [CrossRef] [Google Scholar]
- McKenzie A, Hallberg S, Creighton BC, Volk BM, Link TM, Abner MK, et al. A novel intervention including nutritional recommendations reduces hemoglobin A1c level, medication use, and weight in type 2 diabetes. JMIR Diabetes. (2017) 2:e5 10.2196/diabetes.6981 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- White WB, Cannon CP, Heller CR Nissen SE, Bergenstal RM, Bakris GL, et al. Alogliptin after acute coronary syndrome in patients with type 2 diabetes. N Engl J Med. (2013) 369:1327–35. 10.1056/NEJMoa1305889 [PubMed] [CrossRef] [Google Scholar]
- Action to Control Cardiovascular Risk in Diabetes Study Group. Gerstein HC, Miller ME, Byington RP, Goff DC Jr, Bigger JT, et al. Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med. (2008) 358: 2545–59. 10.1056/NEJMoa0802743 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Henry RR, Gumbiner B, Ditzler T, Wallace P, Lyon R, Glauber HS. Intensive conventional insulin therapy for type II diabetes. Metabolic effects during a 6-mo outpatient trial. Diabetes Care. (1993) 16:21–31. 10.2337/diacare.16.1.21 [PubMed] [CrossRef] [Google Scholar]
- Shai I, Schwarzfuchs D, Henkin Y, Shahar DR, Witkow S, Greenberg I, et al. Weight loss with a low-carbohydrate, mediterranean, or low-fat diet. N Engl J Med. (2008) 359:229–41. 10.1056/NEJMoa0708681 [PubMed] [CrossRef] [Google Scholar]
- Iqbal N, Vetter ML, Moore RH, Chittams JL, Dalton-Bakes CV, Dowd M, et al. Effects of a low-intensity intervention that prescribed a low-carbohydrate vs. a low fat diet in obese, diabetic participants. Obesity. (2010) 18:1733–8. 10.1038/oby.2009.460 [PubMed] [CrossRef] [Google Scholar]
- Guldbrand H, Dizdar B, Bunjaku B, Lindstrom T, Bachrach-Lindstrom M, Fredrikson M, et al. In type 2 diabetes, randomisation to advice to follow a low-carbohydrate diet transiently improves glycaemic control compared with advice to follow a low-fat diet producing a similar weight loss. Diabetologia. (2012) 55:2118–27. 10.1007/s00125-012-2567-4 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Nielsen JV, Joensson EA. Low carbohydrate diet in type 2 diabetes: stable improvement of bodyweight and glycemic control during 44 months follow-up. Nutr Metab. (2008) 5:14 10.1186/1743-7075-5-14 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Haimoto H, Iwata M, Wakai K, Umegaki H. Long-term effects of a diet loosely restricting carbohydrates on HbA1c levels, BMI and tapering of sulfonylureas in type 2 diabetes: a 2-year follow-up study. Diab Res Clin Prac. (2008) 79:350–6. 10.1016/j.diabres.2007.09.009 [PubMed] [CrossRef] [Google Scholar]
- Tay J, Thompson CH, Luscombe-Marsh ND, Wycherley TP, Noakes M, Buckley JD, et al. Effects of an energy-restricted low-carbohydrate, high unsaturated fat/low saturated fat diet versus a high-carbohydrate, low-fat diet in type 2 diabetes: a 2-year randomized clinical trial. Diabetes Obes Metab. (2018) 20:858–71. 10.1111/dom.13164 [PubMed] [CrossRef] [Google Scholar]
- Steinberg DM, Tate DF, Bennett GG, Ennett S, Samuel-Hodge V, Ward DS. The efficacy of a daily self-weighing weight loss intervention using smart scales and email. Obesity. (2013) 21:1789–97. 10.1002/oby.20396 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Xiang AH, Trigo E, Martinez M, Katkhouda N, Beale E, Wang X, et al. Impact of gastric banding versus metformin on β-cell function in adults with impaired glucose tolerance or mild type 2 diabetes. Diabetes Care. (2018) 41:2544–51. 10.2337/dc18-1662 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Sniderman AD, Toth PP, Thanassoulis G, Furberg CD. An evidence-based analysis of the National Lipid Association recommendations concerning non-HDL-C and apoB. J Clin Lipidol. (2016) 10:248–58. 10.1016/j.jacl.2016.07.008 [PubMed] [CrossRef] [Google Scholar]
- Verges B. Lipid modification in type 2 diabetes: the role of LDL and HDL. Fundam Clin Pharmacol. (2009) 23:681–5. 10.1111/j.1472-8206.2009.00739.x [PubMed] [CrossRef] [Google Scholar]
- Welthy FK. How do elevated triglycerides and low HDL-cholesterol affect inflammation and atherothrombosis? Curr Cardiol Rep. (2013) 15:400 10.1007/s11886-013-0400-4 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Lu W, Resnick HE, Jablonski KA, Jones KL, Howard WJ, Robbins DC, et al. Non-HDL cholesterol as a predictor of cardiovascular disease in type 2 diabetes: the strong heart disease. Diabetes Care. (2003) 26:16–23. 10.2337/diacare.26.1.16 [PubMed] [CrossRef] [Google Scholar]
- Hirano T. Pathophysiology of diabetic dyslipidemia. J Atheroscler Thromb. (2018) 25:771–85. 10.5551/jat.RV17023 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Creighton BC, Hyde PN, Maresh CM, Kraemer WJ, Phinney SD, Volek JS. Paradox of hypercholesterolaemia in highly trained, keto-adapted athletes. BMJ Open Sport Exerc Med. (2008) 4:e000429 10.1136/bmjsem-2018-000429 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Gomez-Arbelaez D, Bellido D, Castro AI, Ordonez- Mayan L, Carreira J, Galban C, et al. Body composition changes after very low-calorie-ketogenic diet in obesity evaluated by three standardized methods. J Clin Endocrinol Metab. (2017) 102:488–98. 10.1210/jc.2016-2385 [PubMed] [CrossRef] [Google Scholar]
- Moreno B, Crujeiras AB, Bellido D, Sajoux I, Casanueva FF. Obesity treatment by very low-calorie-ketogenic diet at two years: reduction in visceral fat and on the burden of disease. Endocrine. (2016) 54:681–90. 10.1007/s12020-016-1050-2 [PubMed] [CrossRef] [Google Scholar]
- Gross BA, Goss AM. A lower-carbohydrate, higher-fat diet reduces abdominal and intermuscular fat and increases insulin sensitivity in adults at risk of type 2 diabetes. J Nutr. (2015) 145:177S−83S. 10.3945/jn.114.195065 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Levelt E, Pavlides M, Banerjee R, Mahmod M, Kelly C, Sellwood J, et al. Ectopic and visceral fat deposition in lean and obese patients with type 2 diabetes. J Am Coll Cardiol. (2016) 68:53–63. 10.1016/j.jacc.2016.03.597 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Shah RV, Murthy VL, Abbasi SA, Blankstein R, Kwong RY, Goldfine AB, et al. Visceral adiposity and the risk of metabolic syndrome across of body mass index: the MESA Study. JACC Cardiovasc Imaging. (2014) 7:1221–35. 10.1016/j.jcmg.2014.07.017 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Mirza MS. Obesity, visceral fat, and NAFLD: querying the role of adipokines in the progression of nonalcoholic fatty liver disease. ISRN Gastroenterol. (2011) 2011:592404 10.5402/2011/592404 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Vilar-Gomez E, Athinarayanan SJ, Adams RN, Hallberg SJ, Bhanpuri NH, McKenzie AL, et al. Post-hoc analyses of surrogate markers of non-alcoholic fatty liver disease (NAFLD) and liver fibrosis in patients with type 2 diabetes in a digitally-supported continuous care intervention: an open-label, non-randomized, controlled study. BMJ Open. (2019) 9:e023597 10.1136/bmjopen-2018-023597 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Bouchi R, Nakano Y, Fukuda T, Takeuchi T, Murakami M, Minami I, et al. Reduction of visceral fat by liraglutide is associated with ameliorations of hepatic steatosis, albuminuria, and micro-inflammation in type 2 diabetic patients with insulin treatment: a randomized control trial. Endocr J. (2017) 64: 269–81. 10.1507/endocrj.EJ16-0449 [PubMed] [CrossRef] [Google Scholar]
- Gabriely I, Ma XH, Yang XM, Atzmon G, Rajala MW, Berg AH, et al. Removal of visceral fat prevents insulin resistance and glucose intolerance of aging: an adipokine-mediated process? Diabetes. (2002) 51:2951–8. 10.2337/diabetes.51.10.2951 [PubMed] [CrossRef] [Google Scholar]
- Garcia-Ruiz I, Solis-Munoz P, Fernandez-Moreira D, Grau M, Munoz-Yague MT, Solis-Herruzo JA. Omentectomy prevents metabolic syndrome by reducing appetite and body weight in a diet induced obesity rat model. Sci Rep. (2018) 8:1540 10.1038/s41598-018-19973-z [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Bril F, Cusi K. Management of nonalcoholic fatty liver disease in patients with type 2 diabetes: a call to action. Diabetes Care. (2017) 40:419–30. 10.2337/dc16-1787 [PubMed] [CrossRef] [Google Scholar]
- Verrijen A, Francque S, Van Gaal L. The role of visceral adipose tissue in the pathogenesis of non-alcoholic fatty liver disease. Eur Endocrinol. (2011) 7:96–103. 10.17925/EE.2011.07.02.96 [CrossRef] [Google Scholar]
- Bielohuby M, Matsuura M, Herbach N, Kienzle E, Slawik M, Hoeflich A, et al. Short-term exposure to low-carbohydrate, high-fat diets induces low bone mineral density and reduces bone formation in rats. J Bone Miner Res. (2010) 25:275–84. 10.1359/jbmr.090813 [PubMed] [CrossRef] [Google Scholar]
- Wu X, Huang Z, Wang X. Fu Z, Liu J, Huang Z, et al. Ketogenic diet compromises both cancellous and corticol bone mass in mice. Calcif Tissue Int. (2017) 101:412–21. 10.1007/s00223-017-0292-1 [PubMed] [CrossRef] [Google Scholar]
- Simm PJ, Bicknell-Royle J, Lawrie J, Nation J, Draffin K, Stewart KG, et al. The effect of the ketogenic diet on the developing skeleton. Epilepsy Res. (2017) 136: 62–6. 10.1016/j.eplepsyres.2017.07.014 [PubMed] [CrossRef] [Google Scholar]
- Willi SM, Oexmann MJ, Wright NM, Collop NA, Key LL Jr. The effects of a high-protein, low-fat, ketogenic diet on adolescents with morbid obesity: body composition, blood chemistries and sleep abnormalities. Pediatric. (1998) 101:61–7. 10.1542/peds.101.1.61 [PubMed] [CrossRef] [Google Scholar]
- Moreno B, Bellido D, Sajoux I, Goday A, Saavdra D, Crujeiras AB, et al. Comparison of a very low-calorie-ketogenic diet with a standard low-calorie diet in the treatment of obesity. Endocrine. (2014) 47:793–805. 10.1007/s12020-014-0192-3 [PubMed] [CrossRef] [Google Scholar]
- Bertoli S, Trentani C, Ferraris C, De Giorgis V, Veggiotti P, Tagliabue A. Long-term effects of a ketogenic diet on body composition and bone mineralization in GLUT-1 deficiency syndrome: a case series. Nutrition. (2014) 30: 726–8. 10.1016/j.nut.2014.01.005 [PubMed] [CrossRef] [Google Scholar]
- Stagi S, Cavalli L, Iurato C, Seminara S, Brandi M, de Martino M. Bone metabolism in children and adolescents: main characteristics of the determinants of peak bone mass. Clin Cases Miner Bone Metab. (2013) 10:172–9. [PMC free article] [PubMed] [Google Scholar]
- Choi SJ, Files DC, Zhang T, Wang ZM, Messi ML, Gregory H, et al. Intramyocellular lipid and impaired myofiber contraction in normal weight and obese older adults. J Gerontol A Biol Sci Med Sci. (2016) 71:557–64. 10.1093/gerona/glv169 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Mingrone G, Marino S, DeGaetano A, Capristo E, Heymsfield SB, Gasbarrini G, et al. Different limit to the body’s ability of increasing fat-free mass. Metabolism. (2001) 50:1004–7. 10.1053/meta.2001.25650 [PubMed] [CrossRef] [Google Scholar]
- Forbes GB, Welle SL. Lean body mass in obesity. Int J Obes. (1983) 7:99–107. [PubMed] [Google Scholar]
- Bopp MJ, Houston DK, Lenchik L, Easter L, Kritchevsky SB, Nicklas BJ. Lean mass loss is associated with low protein intake during dietary-induced weight loss in postmenopausal women. J Am Diet Assoc. (2008) 108:1216–20. 10.1016/j.jada.2008.04.017 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Ciangura C, Bouillot JL, Lloret-Linares C, Poitou C, Veyrie N, Basdevant A, et al. Dynamics of change in total and regional body composition after gastric bypass in obese patients. Obesity. (2010) 18: 760–65. 10.1038/oby.2009.348 [PubMed] [CrossRef] [Google Scholar]
- Varma S, Brown T, Clark J, Maruthur N, Schweitzer M, Magnuson T, et al. Comparative effects of medical vs. surgical weight loss on body composition in a randomized trial. Diabetes. (2018) 67:S1 10.2337/db18-2460-PUB [CrossRef] [Google Scholar]
- Zalesin KC, Franklin BA, Lillystone MA, Shamoun T, Krause KR, Chengelis DL, et al. Differential loss of fat and lean mass in the morbidly obese after bariatric surgery. Met Syndrome Related Dis. (2010) 8:15–20. 10.1089/met.2009.0012 [PubMed] [CrossRef] [Google Scholar]
- Redmon JB, Reck KP, Raatz SK, Swanson JE, Kwong CA, Ji H, et al. Two year outcome of a combination of weight loss therapies for type 2 diabetes. Diabetes Care. (2005) 28:1311–5. 10.2337/diacare.28.6.1311 [PubMed] [CrossRef] [Google Scholar]
- Heymsfield SB, Gonzalez MCC, Shen W, Redman L, Thomas D. Weight loss composition is one-fourth fat-free mass: a critical review and critique of this widely cited rule. Obes Rev. (2014) 15:310–21. 10.1111/obr.12143 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Davis PG, Phinney SD. Differential effects of two very low calorie diets on aerobic and anaerobic performance. Int J Obes. (1990) 14:779–87. [PubMed] [Google Scholar]
- Kim JE, O’Connor LE, Sands LP, Slebodnik MB, Campbell WW. Effects of dietary protein intake on body composition changes after weight loss in older adults: a systematic review and meta-analysis. Nutr Rev. (2016) 74:210–24. 10.1093/nutrit/nuv065 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Frigolet ME, Ramos Barragan VE, Tamez Gonzalez M. Low-carbohydrate diets: a matter of love or hate. Ann Nutr Metab. (2011) 28: 320–34. 10.1159/000331994 [PubMed] [CrossRef] [Google Scholar]
- Kolanowski J, Bodson A, Desmecht P, Bemelmans S, Stein F, Crabbe J. On the relationship between ketonuria and natriuresis during fasting and upon refeeding in obese patients. Eur J Clin Invest. (1978) 8:277–82. 10.1111/j.1365-2362.1978.tb00842.x [PubMed] [CrossRef] [Google Scholar]
- Alison B. E, Michelle D, Christopher D. G, et al. Nutrition Therapy for Adults With Diabetes or Prediabetes: A Consensus Report. Diabetes Care 2019; 43:731-754. Available online at: http://doi.org/10.2337/dci19-0014
- Diabetes UK. 2021. Position Statement: Low carb diets for people with diabetes. Available online at: https://www.diabetes.org.uk/professionals/position-statements-reports/food-nutrition-lifestyle/low-carb-diets-for-people-with-diabetes
- Diabetes Australia 2021. Position Statement: Low carbohydrate eating for people with diabetes. Available online at: https://www.diabetesaustralia.com.au/wp-content/uploads/Diabetes-Australia-Position-Statement-Low-Carb-Eating.pdf